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Department of Physics, University of Malaya, 59100 Kuala Lumpur, Malaysia 

Received 19 SeDtember 1990 

Abstract. The classical-limit scattering matrix (CLSM) formalism was developed by Miller 
as a simple semiclassical procedure for the analyses of complex scattering and reaction 
processes. It invokes simple classical dynamics to define trajectories and superposition 
procedures to obtain interference effects. In one-dimensional systems, Miller has shown 
that the CLSM is equivalent to the standard WKB approximation, I n  this paper, it is shown 
that the equivalence between the CLSM and W K B  extends to general systems. This 
equivalence between the W K R  and CLSM formalisms is attributed to the general equivalence 
of the A-expansion procedure in the W K R  with the stationary phase approximation used 
in the CUM. 

1. Introduction 

Since its development by Miller (1970, 1974), the classical-limit scattering matrix 
(CLSM) has been applied rather sparingly in the study of molecular scatterings (Miller 
1970, 1971, 1972, 1974) and also in some applications in heavy ion nuclear elastic and 
inelastic scatterings (Koeling and Malfliet 1975). By the appropriate use of classical 
dynamics to treat both the translational as well as the internal degrees of freedom of 
a collisional system and further imposing the principle of quantum superposition, the 
CLSM is able to reproduce the quantal interference and diffractive features of a scattering 
event. However, in actual practice, the method involves searching for acceptable 
classical trajectories which satisfy both the initial and final quantum conditions of the 
scattering event. This is numerically not much simpler than the usual procedure adopted 
in scattering and reaction theories (Frobrich et a/  1977). 

In recent developments of the semiclassical distorted-wave Born approximation 
(13+~n)'theory (Hasan acd Brink 1978, Monaco and Brink 1985, Wong el al 1988, 
Wong and Low 1989, 1990), it has been shown that the use of various CLSM procedures 
combined with the W K B  method have led to important simplifications of the DWRA 

theory. This renders the semiclassical DWBA theory feasible for extension to other more 
complex heavy-ion scattering reactions. It is thus necessary to re-examine various 
aspects of the relationship of the CLSM with the Wentzel-Kramers-Brillouin (WKB) 
formalism. In a one-dimensional system, the equivalence of the CLSM to the WKB 

formalism has been established by Miller (1974). This naturally raises the question 
whether the equivalence between the WKB and CLSM extends to general systems. 
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In this paper, the development of both the CLSM and WKB will be traced starting 
from Dirac's transformation theory. In the process, the relationship between the 
h-expansion procedure adopted in the WKB approximation with the stationary phase 
approximation (SPA) used in the CLSM is clarified. The general equivalence of the two 
formalisms is also established. 

2. Quantum mechanical development of the CISM and WKB formalisms in the classical 
limit of transformation theory 

In the transformation theory of Dirac (1927, 1933, 1945), the physical properties of a 
system are specified by the eigenvalues Qi of the canonically conjugate dynamical 
variables oj E { $ , E ] ,  i = 0 or I ,  such that 

dKJJ= Q m  (1) 

where the bras (Qil and kets IQ.) characterize the state of the system. There exists then 
a-transformation operator SP which links the bras of one set-of dynamical variables 
Qj E {$, j} to the kets of another set of dynamical variables f: E { Q, P),  j = 0 or 1. In 
different ( Qi, 4 )  representations, the transformation functions (Q, 16) of the operator 
.d can be wriiien as foiiows: 

(Qj lq)=Av(Qt ,  4 )  exp[itTs(Qi, p , ) lhI  (2) 

where 8,(Qj, 4 )  is the quantum phase function. 
In adopting this formulation, Dirac (1945) was able to preserve a close analogy 

between the quantum transformation theory with the classical transformation theory. 
L l l l J  is J I L Y W I L  vy L l l F  " C L L I a L l Y l l  Y l  Ulr '1"nlrrar a,,a.1u&"c L V  L l l r  CLLllUlllraL C'LULLLLLV'L" 

from equation (2). The resulting quantum canonical equations are obtained as 
I%:" ' "L -..... L.. &L.. An-: ..̂ . :.." ^E tL- ".."..til *^ rlr- ,.,."A..:,,,., e .̂.n*:̂ ..̂  

The different representatives of a dynamical variable B are linked to each other through 
the equation 

(Q;lBIQi)= (QilC) dP,(cIBIPj) dPj(PjlQ:) i, j = 0 or 1. ( 6 )  
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Corresponding to the eigenvalues q and p of the dynamical variables 4 and p^ 
respectively is the standard transformation function ( q l p )  which can be written as 

It can be shown (Dirac 1958) that the uncertainty principle is implicitly built into the 
above transformation function when the nnitarity equation (5) is used. 

Following Miller (1970, 1974), the semiclassical CLSM formalism is then developed 
by consistently applying the stationary phase approximation (Erdelyi 1956) to the 
transformation theory. This involves using the standard result for an integral with a 
highly oscillatory integrand (Erdelyi 1956) 

where a is a large parameter and z, is the stationary point of the phase function which 
is obtained as the solution of the equation 

f ( z o ) = 0 .  (9) 

Thus, in the case of the transformation relation (4a), the SPA is applied to the following 
integral: 

~ ~ ~ a j " ; ; . . " e x p ( i ( ( - l ) ' ~ , , ~ . ( Q . ,  Ql-0+CFt--i.j(Q~--i. P, ) ) l f i )  dQ8-i. (10) 

In this manner, the classical limit condition h + 0 has been incorporated into the 
transformation theory when the SPA is invoked, with Planck's constant h occurring in 
the denominator of the large parameter n = I/*.  

On evaluation of the integral (10) using the stationary phase condition, it is readily 
shown that the quantum phase functions 3Fc obey the dynamical equations as given by 

( 1 1 )  8q(Q;, 4 )  = ( - l ) j Q ~ Q , - j + ~ , - ~ , j ( Q , - j ,  4)  
and 

A second pair of dynamical equations for the quantum phase functions 
of 

in the form 

3 g (  Q;, 4) = 8i . i  -;( Qi, Pi-;) - (-1 Ypi-jP, (13) 

and 

is derived from the other transformation relation (46) using the same procedure as 
that of equations ( 1 1 )  and (12). These equations are identical with the dynamical 
equations of the classical generating functions Fy (Goldstein 1950). This establishes 
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the correspondence relation between the quantum phase function in the classical limit 
and the classical generating function 

K K Loh and K S Low 

*-0 

iF,(Q., 4)- FdQ,, 5). (15) 

Furthermore, substitution of the expression ( 2 )  for the transformation function into 
the unitarity condition (9, followed by the expansion of the phase function to the 
G - 4  ,.-,la- ^^ 
1 I L ) L  "l"CL 'la 

produces the CLSM expression for the amplitude A,(Q;, P,) in the form 

IA,(Q,, p,)I2= ( 2 ~ ) - ' ( a ' 5 ~ / a ~ . a q )  (17) 

With the result (17) and the correspondence relation (15), the transformation 
after further manipulation. 

function is reduced to the form given by 

To account for quantal interference effects, Miller (1970, 1974) then assumed that the 
contributions arising from all possible classical trajectories can be superposed to 
produce the CLSM expression 

The mean value ( B ( q ,  p ) )  of a quantum dynamical variable B(i, 6) can then be 
given by 

xexp{iPj(Ql-Qi)}dQI dQ, (20 )  

which on integration and using the Dirac delta function S( Qi - Qj) reduces to 

The correspondence relation between the mean value of a quantum dynamical variable 
in the classical limit and its classical analogue is thus stated by 

With these correspondence relations, it has been shown that in principle the CLSM 

formalism allows all degrees of freedom in a collisional system to be treated classically. 
Conceptually, this is an important advance in scattering theory as it provides a 
classical-like picture of scattering processes and greatly simplifies the computation of 
the dynamical parameters involved. Combined with the principle of superposition of 
contributions from the various classical trajectories, the CLSM is then able to reproduce 
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the quantal interference and diffractive effects of heavy ion nuclear elastic and inelastic 
scattering (Koeling and Malfliet 1975), thus making it a potentially powerful numerical 
tool. Nevertheless, before the CLSM is successfully extended to more complex nuclear 
reactions it is necessary to find methods which enable the complete determination of 
the contributing classical trajectories for systems with many degrees of freedom 
(Frobrich et a/ 1977). 

With respect to one-dimensional systems, Miller (1974) has shown that the trans- 
formation functions (19) reduces to the expression given by 

, 
!, 

+exp (iqn --- : j  dx(2m(E- V ( x ) ) ) ’ / ’ ) ) .  

This expression (23) is thus identical to the usual WKB wavefunction for one- 
dimensional systems. This result is of significance in view of the apparently different 
procedures used in the two semiclassical formalisms; the former is based upon the 
SPA to the transformation theory of Dirac and the other upon an expansion in orders 
of h with respect to the differential equation of Schrodinger. Furthermore, it is logical 
to inquire if the equivalence between the CLSM and WKB methods extends to more 
general systems. In this respect, it is noted that the WKB formalism shares a common 
quantum mechanical foundation with the CLSM since Dirac (1927) has already shown 
that the Schrodinger wave equation is subsumed within the transformation theory as 
a dynamical principle. This enables us to follow a more general approach (Van Vleck 
1928) in the development ofthe WKB from the transformation theory. In the Schrodinger 
representation, this involves the expansion of the Hamiltonian H( Q;, aB,/aQ,) in 
powers of fi ,  thus resulting in the following equation: 

+terms in higher powers of fi = 0 (24) 
where H’= aH/a(aB,/aQj). 

From the zeroth-order term in h the Hamilton-Jacobi equation (Goldstein 1950) 

is recovered and its solution determines the phase function gF,(Qi, 4) .  The recovery 
of the Hamilton-Jacobi equation from equation (24) establishes the following corre- 
spondence relation between the quantum phase function and the classical generating 
function 

b - 0  

tFu(Q;, 4) --+ F;,(Qi, 4). (26) 
From the first-order term in h of equation (24), the following general equation for 

the amplitude function A,(Qj, 5 )  is obtained: 
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By making the substitution (Van Vleck 1928) 
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in a conservative system whereupon 

e?L0 
a! 

the equation (27) for the amplitude function simplifies to 

J@ 

i JQ; 
I H : - = O  

The solution for 0 is a constant given by 

0 ( Qi,- ::) =C.  

The transformation function can then be expressed as 

which is constructed by the superposition of the contributions due to the classical 
trajectories generated from the Hamilton-Jacobi equation (25).  Based upon these WKB 

transformation functions, the correspondence relation between the mean value ( B ( q ,  p ) )  
of a dynamical variable B ( q , p )  and its classical analogue is obtained as shown by 

-f B (Q,, 2) (2) dQ,. (33) 

Thus the CorresDondence relations and tramformation functions of the WKB in a 
more generalized case are completely identical with similar results of the CLSM. This 
siudy has thus shown the compieie identiiy beiween the WKB and CLSM formaiisms 
for general systems described by the transformation function (Q#lP,). 

3. Discussion and conclusion 

n i s  S!dy has !raced the deve!opmen! of the WE! and C U M  forma!isms from Dirads 
transformation theory as the common quantum mechanical foundation to both formal- 
isms. Crucial to this is the ansatz of the transformation function in the form of equation 
(2) which on the application of the SPA transforms into classical generating functional 
forms. The adoption of the stationary phase approximation in the CLSM formalism is 
thus shown to be equivalent to the asymptotic fi-expansion of the Hamiltonian 
procedure in the WKB. This conclusion is supported by the complete agreement hetween 
the results of the WKB and the CLSM for the transformation functions and the various 
correspondence relations. Hence, the CLSM and WKB are two different approaches 
which consistently incorporated the classical limit condition h + 0 into the transforma- 
tion theory thereby reducing it to two equivalent semiclassical formalisms with the 
same level of accuracy. 
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Having established the equivalence between the WKB and CLSM, this paper thus 
provides the basis for intermixing the procedures and concepts from both the WKB 

and CLSM into the semiclassical DWBA for the study of complex nuclear reactions as 
developed by Hasan and Brink (1978) and later extended into a completely analytical 
formulation by Wong et a1 (1988) and Wong and Low (1989, 1990). A paper clarifying 
the relationship of the semiclassical DWBA with the WKB and CLSM is in preparation. 
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